Internet of Things and Services
Guido Stephan
From the Internet to a Web of Things thesis

Internet

Research Networks

ARPANET TCP/IP http VoIP Mobile Web Social Media M2M Smart Grid Smart City

Web2.0

Internet / Web of Things

Guido Stephan
Vertical communication using Internet Protocol/Web down to field level

Market Pull
- Global megatrends require smart solutions based on seamless **cross-domain integration** e.g. multi-modal energy systems)
- Efficient information sourcing for **big data** and process optimization
- New **business models** require horizontal eco-systems and vice versa

Technology Push
- Powerful system on chip below $1 enables **internet / web-technology** and allows **ubiquitous web access** even to smallest field devices
- **Internet of Things / web of things** based machine-to-machine (**M2M**) for flexible integration
- Networked embedded systems supporting **distributed control**
Vertical communication using Internet Protocol/Web down to field level

Today: Hierarchical Communication
(diverse, specific)

- Separated tiers
- Dedicated and domain specific communication
- Heterogeneous and low-level data representation
- Non-uniform access to devices and information
- Difficult cross domain integration

Tomorrow: Vertical Communication
(unified, IP/Web based)

- **Seamless communication** within and across domains
- **Unified access** to all functional units including field devices
- **Service oriented architecture**

Building Automation
Plant Automation
Energy Automation

- Diverse, specific communication protocols
- Separated tiers
Vertical communication is key to integration and control of complex distributed systems

Example: Smart Grid

110kV

Communication

10-50kV med voltage

Distribution Grid Control

0,4kV low voltage

Power flow

Communication:
- Task specific, diverse
- Seamless, unified, IP/Web based

Vertical Communication from Power Grid to Smart Grid
Vertical communication is key to integration and control of complex distributed systems

Example: Smart Grid

Vertical Communication from Power Grid to Smart Grid

<table>
<thead>
<tr>
<th>Communication</th>
<th>Number of entities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution Grid Control</td>
<td>10^3</td>
</tr>
<tr>
<td>Energy Marketplace</td>
<td>10^4</td>
</tr>
<tr>
<td>Virtual Power Plant</td>
<td>10^7</td>
</tr>
<tr>
<td>Low Voltage Grid Control</td>
<td>10^9</td>
</tr>
<tr>
<td>Smart Building</td>
<td></td>
</tr>
</tbody>
</table>

Power flow

Smart meter
What are possible developments? Two approaches

Data Centric Approach

Cloud Services + Internet of Things = Big Data

Information Centric Approach

Smart Things + Internet = Web of Things

- Trust
- Proof
- Logic
- Rules / Query
- Ontology
- RDF Model & Syntax
- XML Query
- XML Schema
- XML
- Namespaces
- URI / IRI
- Unicode

Smart „Thing“

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>Ontology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Web Service</td>
</tr>
</tbody>
</table>
Research fields at Siemens for IoT

Web of Things
Web-based integration and interaction of smart distributed systems

Massive Distributed Systems
Plug and automate for massively distributed systems

Embedded Networks
Standard IT technologies for networked embedded systems

Industrial Communication
Reliable communication with guaranteed quality for industrial applications
Scope:
• Today, many IoT architectures are used in many different contexts (e.g. sensor networks, logistics)
• Many future solutions, applications, as well as their lasting realization will rely on a consistent IoT approach

Results, Deliverables, Impact:
• Identification, collection, and classification of IoT requirements
• Development of an open architectural reference model for interoperable IoT-systems based on key building blocks; manual for how to use the model
• Validation of the architectural reference model against requirements and implementation of real-life use cases

Project Details:
Duration: Sep. 2010 – Aug. 2013

Related Technologies:
• Internet of Things: Concepts and technologies
• Communication protocols
• Embedded networks
ICeWater

Scope:
- Real-time monitoring of water infrastructure and smart metering
- Optimize water network operations to reduce energy requirement and water waste
- Address the "water-energy" nexus
- Detect and localize leaks in real-time
- Exploit Internet of Things paradigms to overcome shortcomings of traditional architectures

Results, Deliverables, Impact:
- Input to roadmap development to
 - Innovations for products
 - Urban data research and development center
 - Testing of technologies in two live pilots (Milan, Italy, Timisoara, Romania)

Project Details:
Duration: Oct. 12 – Sep. 15

Related Technologies:
- IT platforms for smart cities
- Internet of Things and service architectures
- Energy efficient communication
- Smart apps, smart metering
Many thanks for your attention!

Guido Stephan
Head of Technology Field
Siemens AG / Germany / CT RTC NEC
Otto-Hahn-Ring 6
81739 Munich
Phone: +49 (89) 636-52950
Fax: +49 (89) 636-51115
Mobile: +49 (173) 7074426
E-mail:
stephan.guido@siemens.com
siemens.com/innovation