Connecting wind power to the grid
Gas-insulated medium-voltage switchgear for wind farms

www.siemens.com/energy
Wind power is booming – now and in the future

The international targets for reducing greenhouse gases have led to a boom in renewable energies, with a special focus on wind power. Since the start of the new millennium, the newly installed capacity has increased by up to 30 percent per year. The European Union’s goal is to obtain 20 percent of generated electricity from renewable energy sources by 2020, with the largest share coming from wind power at almost 35 percent. To reach this goal, new wind power capacities with a total output of around 100 GW need to be installed in the EU by 2020.

Market prospects are also promising in other parts of the world. The need and demand for wind power is constantly growing, not just in industrialized but also in emerging countries.
Gas-insulated medium-voltage switchgear (GIS) are used for various applications in wind farms. Depending on the operator’s requirements, different configurations of medium-voltage GIS allow the individual wind turbines to be safely connected to the wind farm’s own power grid.

Cables transmit the generated power to a collector substation where another medium-voltage GIS protects the wind farm on the one hand and the power transformer on the other, and therefore ensures a safe connection of the sustainably generated power to the high-voltage transmission grid. Within larger wind farms, reactive power compensation is used to minimize reactive power flow. This system is also connected with the wind farm via gas-insulated medium-voltage switchgear.

Typical layout of wind farms

Arrangement of the gas-insulated medium-voltage switchgear in wind farm applications
For the optimal operation of your system

Gas-insulated medium-voltage switchgear for wind farm applications

- Wind turbine: NXPLUS C Wind, 8DJH, SIMOSEC, NXPLUS, 8DA
- Collector substation: 8DA, NXPLUS, NXPLUS C, 8DJH
- Reactive power compensation: 8DA, NXPLUS, NXPLUS C, 8DJH

<table>
<thead>
<tr>
<th>Switchgear type</th>
<th>Voltage (kV)</th>
<th>Short-circuit current max. (kA)</th>
<th>Rated current busbar max. (A)</th>
<th>Rated current feeder max. (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8DA</td>
<td>40.5</td>
<td>40.0</td>
<td>5,000</td>
<td>2,500</td>
</tr>
<tr>
<td>NXPLUS</td>
<td>40.5</td>
<td>31.5</td>
<td>2,000</td>
<td>2,000</td>
</tr>
<tr>
<td>NXPLUS C Wind</td>
<td>36.0</td>
<td>25.0</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>NXPLUS C</td>
<td>24.0</td>
<td>25.0</td>
<td>2,500</td>
<td>2,000</td>
</tr>
<tr>
<td>SIMOSEC</td>
<td>24.0</td>
<td>20.0</td>
<td>1,250</td>
<td>1,250</td>
</tr>
<tr>
<td>8DJH</td>
<td>24.0</td>
<td>20.0</td>
<td>630</td>
<td>630</td>
</tr>
</tbody>
</table>
Offshore projects

<table>
<thead>
<tr>
<th>Position</th>
<th>Switchgear type</th>
<th>Electrical data</th>
<th>Scope of supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walney, United Kingdom</td>
<td>NXPLUS C Wind, fixed-mounted circuit-breaker switchgear, gas-insulated, single busbar</td>
<td>36 kV, 20 kA, 630 A</td>
<td>51 panels</td>
</tr>
<tr>
<td>Greater Gabbard, United Kingdom</td>
<td>NXPLUS, fixed-mounted circuit-breaker switchgear, gas-insulated, single busbar</td>
<td>40.5 kV, 31.5 kA, 2,000 A</td>
<td>31 panels</td>
</tr>
</tbody>
</table>

Scheme 1
- Switchgear type: 8DA10, fixed-mounted circuit-breaker switchgear, gas-insulated, single busbar
- Electrical data: 24 kV, 40 kA, 2,500 A
- Scope of supply: 6 panels

<table>
<thead>
<tr>
<th>Position</th>
<th>Switchgear type</th>
<th>Electrical data</th>
<th>Scope of supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middelgrunden, Denmark</td>
<td>NXPLUS, fixed-mounted circuit-breaker switchgear, gas-insulated, single busbar</td>
<td>36 kV, 31.5 kA, 1,600 A</td>
<td>59 panels</td>
</tr>
</tbody>
</table>

Scheme 1
- Switchgear type: NXPLUS, fixed-mounted circuit-breaker switchgear, gas-insulated, single busbar
- Electrical data: 36 kV, 20 kA, 630 A
- Scope of supply: 51 panels

Scheme 2
- Switchgear type: 8DA10, fixed-mounted circuit-breaker switchgear, gas-insulated, single busbar
- Electrical data: 24 kV, 40 kA, 2,500 A
- Scope of supply: 6 panels

Scheme 3
- Switchgear type: NXPLUS, fixed-mounted circuit-breaker switchgear, gas-insulated, single busbar
- Electrical data: 36 kV, 31.5 kA, 1,600 A
- Scope of supply: 59 panels
Onshore projects

<table>
<thead>
<tr>
<th>Location</th>
<th>Position</th>
<th>Switchgear type</th>
<th>Electrical data</th>
<th>Scope of supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamèque, United States of America</td>
<td>Wind turbines</td>
<td>Simosec, fixed-mounted circuit-breaker switchgear, single busbar</td>
<td>15 kV, 16 kA, 630 A</td>
<td>60 panels</td>
</tr>
<tr>
<td>Bisdorf, Germany</td>
<td>Collector substation</td>
<td>NXPLUS, fixed-mounted circuit-breaker switchgear, gas-insulated, single busbar</td>
<td>36 kV, 31.5 kA, 1,250 A</td>
<td>12 panels</td>
</tr>
<tr>
<td>Germinon, France</td>
<td>Wind turbines</td>
<td>8DJH, fixed-mounted circuit-breaker switchgear, gas-insulated, single busbar</td>
<td>24 kV, 20 kA, 630 A</td>
<td>32 panels</td>
</tr>
</tbody>
</table>
Worldwide references

Onshore projects

1. Oaxaca, MX, 2010
 22 panels

2. Te Uku, NZ, 2010
 6 panels

3. Lamèque, US, 2010
 60 panels

4. Cernavoda, RO, 2010
 28 panels

5. Puuskä, FI, 2010
 22 panels

6. Alto Contada, PT, 2010
 18 panels

7. Töftedal, SE, 2010
 60 panels

8. Mont Crosin, SZ, 2010
 24 panels

9. Germinon, FR, 2010
 32 panels

10. Fossa del Lupo, IT, 2010
 35 panels

11. La Fatarella, ES, 2010
 21 panels

12. Velika Popina, HR, 2010
 13 panels

 14 panels

 6 panels

15. Amherst, CA, 2008
 27 panels

 18 panels

 16 panels

18. Zhangbei, CN, 2006
 99 panels

19. Fröhden, DE, 2006
 13 panels

20. Parc Eolien, MA, 2006
 209 panels

 7 panels

22. Turbowinds, CR, 2002
 5 panels

23. Darlowo, PL, 2001
 12 panels

 3 panels

Offshore projects

1. Baltic 1, DE, 2010
 21 panels

2. Belwind, BE, 2010
 14 panels

3. Walney, GB, 2010
 51 panels

4. Lincs, GB, 2010,
 26 panels

5. London Array, GB, 2010
 20 panels

6. Greater Gabbard, GB, 2009
 37 panels

7. Thanet, GB, 2009
 30 panels

8. Offshore 1, DE, 2009
 120 panels

9. Lynn and Inner Dowsing, GB, 2007
 10 panels

10. Lillegrunden, SE, 2006
 47 panels

11. Arklow Bank, IE, 2003
 10 panels

12. Middelgrunden, DK, 2000
 59 panels

13. Zhangbei, CN, 2006
 99 panels

 13 panels

15. Parc Eolien, MA, 2006
 209 panels

 14 panels

17. Westereems, NL, 2008
 6 panels

18. Amherst, CA, 2008
 27 panels

 18 panels

 16 panels

 7 panels

22. Turbowinds, CR, 2002
 5 panels

23. Darlowo, PL, 2001
 12 panels

 3 panels
Published by and copyright © 2011:
Siemens AG
Energy Sector
Freyeslebenstrasse 1
91058 Erlangen, Germany

Siemens AG
Energy Sector
Power Distribution Division
Medium Voltage
Mozartstrasse 31 c
91052 Erlangen, Germany

For more information, please contact
our Customer Support Center.
Phone: +49 180 524 70 00
Fax: +49 180 524 24 71
(Charges depending on provider)
E-mail: support.energy@siemens.com

Power Distribution Division
Medium Voltage
Order No. E50001-G710-A400-X-4A00
Printed in Germany
Dispo 30403, c4bs No. 7474
fb 3674 BR 482266 WS 03112.

Printed on elementary chlorine-free bleached paper.
All rights reserved.
Trademarks mentioned in this document are
the property of Siemens AG, its affiliates, or their
respective owners.

Subject to change without prior notice.
The information in this document contains
general descriptions of the technical options
available, which may not apply in all cases.
The required technical options should therefore
be specified in the contract.